sck cen

Can soil mineralogy predict radiocaesium bioavailability?

Margot Vanheukelom^{1,2}, Lieve Sweeck¹, Erik Smolders² margot.vanheukelom@sckcen.be linkedin.com/in/margotvhk (or scan QR-code)

Context

The emission of radioactive caesium (e.g. ¹³⁷Cs) in the soil can be take up by plants, allowing ¹³⁷Cs to enter the food chain. Decision-makers use ¹³⁷Cs soil-plant transfer models to predict areas at risk of ¹³⁷Cs transfer. The models are based on soil and plant properties, such as the clay content of the soil.

¹Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Belgium ²Division of Soil and Water Management, University of Leuven, Belgium

Problem

Current models poorly predict Cs bioavailability in soils on a worldwide scale. clay content

- = particle size measure
- \neq type of clays present
- \neq selectivity of soil particles for ¹³⁷Cs absorption

clay content = the amount of particles in the soil with an equivalent spherical diameter smaller than 2µm

Clay mineralogy

Soils contain clay minerals with distinct layered crystal structure. Certain 2:1 type clay minerals can selectively absorb ¹³⁷Cs so that it is *not available* to the plant. Clay minerals determine the fate of Cs in the soil-plant system.

Strategy

- collect soils of contrasting parent rock and weathering stage
- quantifying mineralogy \rightarrow extent of ¹³⁷Cs retention
- conducting laboratory pot experiment lacksquare \rightarrow ¹³⁷Cs bioavailability
- → Improve Cs soil-plant transfer predictions by integrating clay mineralogy

Methods **Soil collection**

$RIP^* = K_c(Cs:K) \cdot [FES] \approx K_D \cdot [K^+]$ \rightarrow K_D = RIP/[K⁺]

Results

If the content of 2:1 type clay minerals in the soil increases, the selective absorption of ¹³⁷Cs increases.

Mineralogy quantification

- soil powder + 10 w/w% ZnO
- X-ray diffraction ullet

Pot experiment

- soils spiked with ¹³⁷Cs + fertiliser

2:1 clay (w/w%) in soil

Further research

X-ray diffraction method is laborious and expensive...

Mineral properties

model coefficients: mineral data from literature

ryegrass (Lolium perenne L.) growth period of 30 days

Expectations

The role of soil mineralogy on ¹³⁷Cs bioavailability will become clear after

lacksquare

- quantifying the mineralogy
- analysing soil chemical properties

- e.g. RIP of pure minerals
- Soil properties
 - model input data: soil maps
 - e.g. SoilGrids (clay%, CEC, SOC, pH, exch K, ...)

Link with pedotransfer functions • e.g. CEC/clay% to predict type of minerals

