Maia, E. L. ${ }^{1,2}$, Gavrilov S. ${ }^{1}$, Tsisar, V. ${ }^{1}$, De Graeve I. ${ }^{2}$
${ }^{1}$ Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
${ }^{2}$ Research group of Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel (VUB) E-mail: eloa.lopes.maia@sckcen.be

SUJRF
ELECTROCHEMICAL \& SURFACE ENGINEERING RESEARCH GROUP

1. RESEARCH CONTEXT

In the framework of MYRRHA project, liquid metal corrosion is one of the concerns regarding environment degradation of selected structural materials

OBJECTIVES

Develop a methodology to characterize localized corrosion initiation mechanisms on austenitic steels in a heavy liquid metal environment

CORROSION PROCESS
PROPAGATION

RELEVANCE

Additional background knowledge to qualify liquid metal mitigation approaches

CHALLENGES

Environment
Electrochemical and optical techniques are not applicable in liquid LBE due to its physical properties

Phenomenon
Corrosion initiation process occurs in a very short time scale and small dimensions

FAILURE

2. EXPERIMENTAL APPROACH

EX-SITU

After
Observation of the surface before and after exposure in LBE

> Link between surface microstructure and corrosion initiation location

Microscopy

Optical microscopy, Scanning electron microscopy and X-ray microanalyses

Electrochemical and surface analyses

Measurement of impedance (IS) response of the system (316L/ oxide layer/ LBE)

Oxide layer response over time when exposed to liquid LBE

Propose to use multisine impedance spectroscopy (ORPEIS) to improve the quality of the measurement

