Epigenetic biomarkers of radiation-induced cardiovascular disease and secondary cancers

Magy Sallam^{1,2}, Mohamed Ahmed Mysara¹, Sarah Baatout^{1,3}, Raghda Ramadan¹, Pieter-Jan Guns², An Aerts⁴ & Mohammed Abderrafi Benotmane¹

¹ Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium;

² Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium;

³ Department of Molecular Biotechnology, Ghent University, Ghent, Belgium;

⁴ Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium

E-mail: magy.sallam@sckcen.be

sck cen

Radiation... the good, the bad and the epigenetics

Aims

Results

Computed Tomography (CT)

Finding DNA methylation biomarkers to estimate the risk of early and late radiation-induced cardiovascular events after breast cancer radiotherapy.

Finding microRNA (miRNA)/long non coding RNA (lncRNA) biomarkers for glioblastoma risk assessment. 2.

Validation of biomarkers in remaining breast cancer patients blood pellets

Identification of differentially expressed miRNA in glioblastoma tissue samples

Preclinical investigation of DNA methylation biomarkers of RICVD

Identification of genes \geq 25% differential methylation relative to sham-irradiated rats by SureSelect Methylseq

Meta analysis of LncRNA biomarkers of glioblastoma:

After meta-data filtration, 4 studies were selected for further analysis

Identification of differentially expressed miRNA in human glioblastoma tissue 2. samples

> Figure 2: Relative fold change of sequencingidentified candidate glioblastoma miRNA biomarkers in in remaining glioblastoma tissue samples (* $\rightarrow p < 0.05$)

Mir-96-5p expression was found to be significantly

Figure 1: mRNA expression levels of SLMAP, ITPR2 and E2F6 in the blood of rats undergoing either sham irradiation (0 Gy) or fractionated irradiation of 0.92, 6.9 and 27.6 Gy and sampled at 1.5, 3, 7 and 12 months after irradiation.

(*=p<0.05 and **=p<0.01 between different doses within the same time point, #=P<0.05 and

increased in human glioblastoma tissue samples

Conclusions

150-

Fold Change 201 Change 201 Change

- Rat irradiation with 1.2 Gy induced **DNA methylation alterations** that were detectable in blood samples until 7 months after irradiation relative to sham irradiated rats.
- 3 promising differentially methylated genes were identified in irradiated rat (SLMAP, ITPR2 and E2F6), which have been associated previously with cardiac function in literature.
- **DNA methylation alterations** were observed in breast cancer patients after radiotherapy and a number of differentially methylated genes were identified (validation is ongoing)
- Meta analysis of publicly available glioblastoma RNAseq data identified 88 IncRNAs that were found to be differentially expressed in all included studies.
- miR-96-5p was found to be differentially expressed in glioblastoma tissue samples relative to normal brain tissue.

Acknowledgements

This project (MEDIRAD) has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 755523. We'd also like to thank the collaborators from our MEDIRAD partner institutes CCUL, UMCG, TUM and IRSN.

