sck cen

Effects of calcium leaching and recalcification on OPC

Luong The Thinh Nguyen^{1,2}, Quoc Tri Phung¹, Norbert Maes¹, Özlem Cizer², Geert De Schutter³

¹Belgian Nuclear Research Centre, SCK CEN, Belgium ²Department of Civil Engineering, KU Leuven, Belgium ³Department of Structural Engineering and Building Materials, Ghent University, Belgium E-mail: luong.the.thinh.nguyen@sckcen.be

Abstract

 \succ Calcium leaching is a degradation process that removes calcium from hydrated Portland cement and hereby leads to an increase in porosity, decrease in pH, cracks formation and steel corrosion.

- \succ In this study recalcification is explored as a method to repair degraded Portland cement microstructure.
- \succ For the first time, formation of new Calcium-Silicate-Hydrate after recalcification is observed.

> Effects of calcium leaching and recalcification on Ca/Si ratio, porosity and pore size distribution are elucidated.

Objectives

- \succ Observe recalcification in calcium leached OPC.
- \succ Investigate effects of leaching/recalcification on:
 - Microstructure.
 - Mineralogy.
 - Ca/Si ratio.
 - pH.

	Sampl	water/cement ratio	0.5		
		Curing	Sealed, 28 days		
		Sample size (D x H)	10 x 7 mm		
	Leaching	Chemical	NH ₄ NO ₃		
		Concentration	6M		
		Duration	4 – 6 – 8 – 10 – 24 hours		
	lcification	Chemical	Ca(OH) ₂		
		Concentration	Saturated (~0.03M)		
	Recalcifid	Duration	6 days		

Results

SEM-EDX capturing Ca/Si ratio of (left) leached and (right) recalcified sample. Leached zone is red circled, intact zone bottom half.

SEM-SE showing formation of Calcium-Silicate-Hydrate network filling leaching-derived pores. (Left) leached and (right) recalcified sample.

Leaching c	Leaching duration (h)		4	6	8	10	24
Porosity	Leached	21.8	25.9	26.7	25.6	25.3	30.0
by MIP (%)	Recalcified		23.9	25.8	24.7	27.32	28.4

Conclusion

 \succ Evidence of new Calcium-Silicate-Hydrate formation to fill leaching-

Mercury Intrusion Porosimetry (MIP) measurement on 24h-leached (L24), 6d-recalcified (R24) and reference (REF) sample.

 \succ Porosity of leached zone drops from 31.9% to 25.4% after recalcification

as estimated by SEM-BSE. SEM-calculated average porosity of reference is around 15%. Porosity reduction after recalcification is also observed by MIP.

 \succ Average Ca/Si of leached sample (1.84) increases after recalcification (1.91).

created pores is observed with SEM-SE.

 \succ EDX mapping shows an increases in average Ca/Si ratio after recalcification.

 \succ MIP-derived cumulative pore volume decreases after recalcification, together with shifting threshold pore diameter to smaller sizes.

 \succ Pore volume from 50 – 1000 nm drops by 44% after recalcification.

> Pore size distribution becomes narrower after recalcification compared to leached MIP curve.

