Cation-driven phase separation in sck cen internally gelated (U,Ce)O_{2-x} microspheres

MATERIALS ENGINEERING

Authors: Selim Uygur ^{1,2}, Christian Schreinemachers³, Gregory Leinders¹, Nico Vanhove¹, Rémi Delville¹, Jozef Vleugels², Marc Verwerft¹ ¹ Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, 2400 Mol, Belgium ² KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44/bus 2450, 3001 Leuven, Belgium ³ Forschungszentrum Jülich GmbH (FZJ), Institute of Energy and Climate Research (IEK), 52425 Jülich, Germany E-mail: selim.uygur@sckcen.be

Introduction

Recently Schreinemachers et al. [1] studied calcined and sintered $U_{1-v}Ce_vO_{2-x}$ microspheres (MS) fabricated via internal gelation (IG) with nominal Ce molar metal fractions, χ (Ce), of up to 30 mol%. Sintered IGMS with nominal $\chi(Ce) = \{20 \mod \%, 25 \mod \% \text{ and } 30 \mod \%\}$ were observed to exhibit phase separation at ambient temperature based on X-ray diffraction (XRD) results which were fitted well to two fcc phases with differing Ce content. MS obtained via IG of Uranyl Nitrate and Ce-Nitrate precursor mixtures are generally expected to have homogeneous cation distribution. Given metal (M) cation homogeneity, the literature consensus has long been that for $y > \sim 0.2$ and moderate hypo-stoichiometry, two fcc phases, MO_{200} and MO_{2-x} , are formed due to a miscibility gap below a critical temperature. While possible oxygen hypo-stoichiometry due to the sintering conditions was yet to be ruled out, the results obtained in [1] called for further characterization of the original material. Unexpected observations were made.

Methods

Using a thermogravimetric analyzer, ~450 mg of sintered duplicate IGMS were subjected to a 12 h equilibration treatment at 800 °C using -376 kJ mol⁻¹ for all $(U,Ce)O_{2-x}$, following accepted thermodynamic data. O/M ratios for as-sintered batches were determined from the O %wt. change, as shown in Figure 1.

O/M after sintering and calculated δ (2 σ)			In-situ⊿ <i>m</i>		$\Gamma_{\rm VID}$ act and O/NA
Phase separation reported	Ce-precursor	χ(Ce) _{nominal}	O/M	δ (2σ)	Expected U/IVI
-	-	0 %	2.000	0.000	2.0001 (a)
NO	Ce(IV)	5 %	2.004	0.002	1.94 (b)
NO		10 %	2.002	0.002	
NO		15 %	2.003	0.002	
NO		20 %	2.000	0.002	
-	-	0 %	1.999	0.002	2.0001 (a)
NO	Ce(III)	5 %	1.998	0.002	1.94 (b)
NO		10 %	2.000	0.000	
NO		15 %	1.998	0.002	
YES		20 %	1.998	0.001	
YES		25 %	2.002	0.001	
YES		30 %	1.997	0.001	

Objectives

Duplicate thermal treatment in [1] on stored, cured and dried material to obtain additional as-sintered IGMS for present work

Obtain precise and accurate O/M ratios of the as-sintered batches to confirm or rule out oxygen hypo-stoichiometry.

Investigate the nature of the phase separation via XRD, Electron Microprobe Analysis (EPMA) and Energy Dispersive Spectroscopy **(EDS)**.

b) Graphically extracted from McMurray et al. 2015 Fig.5a

Figure 1: As-sintered O/M ratios obtained via TG for duplicated IGMS

XRD patterns and LPs were obtained on crushed material. Equilibrated and intact IGMS were pressed into Ag pellets and polished to reveal cross-sections suitable for EPMA. Ce(L α), U(M α), O(K α) lines were used with 20 kV for mapping and about 10 kV for elemental quantifications.

Figure 2: Obtained lattice parameters against global $\chi(Ce)_{real}$ obtained via ICP-MS. Left to right: (a) Schreinemachers et al. as-sintered (b) This work assintered (c) This work after 12 h of equilibration

 \succ EPMA mapping and line scans on cross-sections of 12 h equilibrated **Systematic Ce-gradients increasing from the center to the rim;** Multiple concentric wave-shaped diffuse Ce-enrichment rings; □ Multiple concentric highly Ce-enriched precipitate cluster chains

Role of thermal treatment steps in Ce-segregation currently under study

C. Schreinemachers, G. Leinders, G. Modolo, M. Verwerft, K. Binnemans, and T. Cardinaels, "Fabrication of Nd- and Ce-doped uranium dioxide microspheres via internal gelation," J. Nucl. Mater., vol. 535, p. 152128, 2020.

