SCICEO Fabrication of simulated americium transmutation targets via infiltration

Gamze Colak,^{1,2} Gregory Leinders,¹ Rémi Delville,¹ Frédéric Jutier,¹ Marc Verwerft,¹ Jef Vleugels² ¹Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Boeretang 200, 2400 Mol, Belgium.

²KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.

E-mail: gamze.colak@sckcen.be

Introduction

The long-term radioactivity and heat load of spent fuel is mainly caused by the minor actinides (MAs). A possible solution to reduce the radiological hazard of spent fuel is to partition the MAs and to transmute them into lighter, short-lived elements in fast spectrum reactors.

Infiltration-produced MA loaded microspheres are a promising route and were successfully demonstrated for Am-loading of inert matrix matrices [Richter et al. 1997]. Uranium based matrices were less explored for infiltration and also loading with elevated Am contents proved to be difficult. In a previous PhD thesis, internal gelation (IG) was used for direct production of mixed oxide fuels [Schreinemachers et al. 2020]. Since IG may also offer an elegant route for the creation of porous microspheres enabling good infiltration [Pillon et al. 2003], this route was explored both with and without pore formers.

Methods

Ammonium diuranate (ADU, $3UO_3 \cdot 2NH_3 \cdot 4H_2O$) microspheres are prepared via internal gelation. Further processing involves thermal treatment (calcination) to convert the microspheres into an oxide form. The effect of calcination temperature and use of pore-formers on the microstructure of the microspheres was investigated by gas adsorption and pycnometry, microscopy and X-ray diffraction. Nd(III)-doping of selected host microsphere matrices via infiltration was investigated and tuned. After infiltration, a re-calcination and sintering treatment was applied to obtain $U_{1-v}Nd_vO_{2-x}$ microspheres.

KU LEUVEN

Objectives

Reducing the long-term radiotoxicity of spent fuel via recycling Am

- Developing innovative, dust free and remote fabrication routes for Am targets
- P Fabricating UO₂ microspheres via internal gelation and Nd(III)-doping (surrogate of Am) via infiltration
- Obtaining single-phase U_{1-y}Nd_yO_{2-x} targets

Figure 1. Optical microscopy pictures of infiltration host matrices; at 550 °C calcination the composition is mixture a of UO₃ and U₃O₈, 650 °C and 800 °C their compositions are U₃O₈ with & without pore-formers.

Results and Discussion

Figure 2. XRD diffractograms of infiltrated microspheres. (a) Pure UO₂ and Nd(III)-doped UO₂. Comparison of high angle peaks of microspheres calcined at different temperatures and infiltrated with (b) $\chi(Nd)=10 \text{ mol}\%$, (c) $\chi(Nd)=20 \text{ mol}\%$, (d) $\chi(Nd)=30 \text{ mol}\%$.

- As calcination temperature increases (Figure 3), more fine porosity is being removed from the microsphere, explaining the reduced SSA as function of calcination temperature (Table 1).
- According to SEM, pore former addition significantly effects microstructure (visible big pockets), however, SSA of microspheres without pore former addition stays the highest. (Figure 4).
- The infiltration treatments applied on 500 °C and 550 °C calcined microspheres appears much more effective for reaching the target dopant concentration (Figure 5) and obtaining single solid solutions (Figure 2).
- Lab infrastructure is being prepared to perform infiltration of Am(III) solution

Figure 4. SEM micrographs of microspheres calcined at 550 °C: (left) without pore-former, (middle) with starch as pore-former, (right) with graphite as pore-former.

Table 1. Specific surface area (SSA) and density of calcined microspheres

T _{calc}		550 °C		650 °C	800 °C
Pore former	None	Starch	С	None	None
Composition	$UO_{3} + U_{3}O_{8}$	UO ₃ + U ₃ O ₈	$UO_{3} + U_{3}O_{8}$	U ₃ O ₈	U ₃ O ₈
SSA (m²/g)	24.7 ± 0.1	18.9 ± 0.1	13.3 ± 0.1	10.8 ± 0.1	6.0± 0.1
ρ _{apparent} (T.D%)	66.9	63.8	78.1	74.8	89.3
$O_{\rm multiple}$ (T.D%)	87.8 ± 0.4	90.6 ± 0.5	90.2 ± 0.2	96.7 ± 0.1	97.6 ± 0.1

