
• Reducing the long-term radiotoxicity of spent fuel via recycling Am

• Developing innovative, dust free and remote fabrication routes for

Am targets

• Fabricating UO2 microspheres via internal gelation and Nd(III)-doping

(surrogate of Am) via infiltration

• Obtaining single-phase U1-yNdyO2-x targets
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Methods
Ammonium diuranate (ADU, 3UO3∙2NH3∙4H2O) microspheres are prepared via

internal gelation. Further processing involves thermal treatment (calcination) to

convert the microspheres into an oxide form. The effect of calcination

temperature and use of pore-formers on the microstructure of the

microspheres was investigated by gas adsorption and pycnometry, microscopy

and X-ray diffraction. Nd(III)-doping of selected host microsphere matrices via

infiltration was investigated and tuned. After infiltration, a re-calcination and

sintering treatment was applied to obtain U1-yNdyO2-x microspheres.

Introduction

The long-term radioactivity and heat load of spent fuel is

mainly caused by the minor actinides (MAs). A possible

solution to reduce the radiological hazard of spent fuel is

to partition the MAs and to transmute them into lighter,

short-lived elements in fast spectrum reactors.
Infiltration-produced MA loaded microspheres are a promising route and were

successfully demonstrated for Am-loading of inert matrix matrices [Richter et

al. 1997]. Uranium based matrices were less explored for infiltration and also

loading with elevated Am contents proved to be difficult. In a previous PhD

thesis, internal gelation (IG) was used for direct production of mixed oxide

fuels [Schreinemachers et al. 2020]. Since IG may also offer an elegant route

for the creation of porous microspheres enabling good infiltration [Pillon et al.

2003], this route was explored both with and without pore formers.

Objectives

Results and Discussion

Conclusion

 Infiltration process conditions were optimized for transmutation fuel target fabrication.

 Lower calcination temperatures (e.g. 500, 550 °C) seem most appropriate to obtain a

porous microstructure, suitable for infiltration.

 Fabrication of Nd-doped (5-30 mol%) UO2 microspheres via infiltration was achieved.

 Excellent sphericity and density microspheres have been obtained.

 The further development of the infiltration process is ongoing for (U,Am)O2 production.
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Figure 1. Optical microscopy pictures of infiltration host matrices; at 550 °C

calcination the composition is mixture a of UO3 and U3O8, 650 °C and 800 °C

their compositions are U3O8 with & without pore-formers.

• As calcination temperature increases (Figure 3), more fine porosity is being

removed from the microsphere, explaining the reduced SSA as function of

calcination temperature (Table 1).

• According to SEM, pore former addition significantly effects microstructure

(visible big pockets), however, SSA of microspheres without pore former

addition stays the highest. (Figure 4).
• The infiltration treatments applied on 500 °C and 550 °C calcined

microspheres appears much more effective for reaching the target dopant

concentration (Figure 5) and obtaining single solid solutions (Figure 2).

• Lab infrastructure is being prepared to perform infiltration of Am(III) solution

according to the present results.

Figure 2. XRD diffractograms of 

infiltrated microspheres. 

(a) Pure UO2 and Nd(III)-doped UO2. 

Comparison of high angle peaks of 

microspheres calcined at different 

temperatures and infiltrated with 

(b) χ(Nd)=10 mol%, 

(c) χ(Nd)= 20 mol%, 

(d) χ(Nd)=30 mol%.

Figure 3. SEM micrographs 

of un-doped microspheres: 

(left) calcined at 500 °C, 

(middle) at 550 °C, 

(right) at 800 °C.
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Figure 4. SEM micrographs 

of microspheres calcined 

at 550 °C: 

(left) without pore-former, 

(middle) with starch as 

pore-former,  

(right) with graphite as 

pore-former.

Tcalc 550 °C 650 °C 800 °C

Pore former None Starch C None None

Composition UO3 + U3O8 UO3 + U3O8 UO3 + U3O8 U3O8
U3O8

SSA (m²/g) 24.7 ± 0.1 18.9 ± 0.1 13.3 ± 0.1 10.8 ± 0.1 6.0± 0.1

ρapparent (T.D%) 66.9 63.8 78.1 74.8 89.3

ρpycnometry (T.D%) 87.8 ± 0.4 90.6 ± 0.5 90.2 ± 0.2 96.7 ± 0.1 97.6 ± 0.1

Table 1. Specific surface area (SSA) and density of calcined microspheres

Figure 5. Lattice parameter a vs. Nd-dopant.
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