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Introduction Objectives

= Alkali activated slag (AAS) is an amorphous alkali-aluminosilicate gel
produced from blast furnace slag (BFS) and alkaline solution as an
activator. With a good physico-chemical performance and potential in
immobilizing waste, AAS is promising as an alternative for the Ordinary
Portland Cement (OPC) in nuclear related applications.
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= Carbonation is one of the crucial durability issues of reinforced OPC (i.e. depth

corrosion of reinforcing steel bars). AAS is also expected to be degraded
when exposed to CO,, though the understanding the effect of
carbonation on AAS remains limited. In general, the process could be

proposed as follow: ,
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Microstructure and related physical properties
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affected much by carbonation due significantly upon carbonation, | o
to the compensation between the especially at AAS with high WB, Upon carbonation, the thermalo stability of .AAS decreased, and
weakening caused by cracks and the because of considerable carbonates were formed. The higher water/binder used, the more
strengthening from carbonate Influence of cracks. carbonates detected.
products. .

Conclusion & Outlook
;’ AAS is relatively vulnerable to carbonation at 1% CO,, 20°C, and 60% relative humidity } ,' Outlook: \
' 1) In contrast to OPC, the flexural strength of AAS decreased significantly, while the compressive strength i Develop i
i was not much influenced by the carbonation. The microstructure of carbonated AAS is more cracking. || geoche(rjnllcal/ccgnfteptual |
: ! : models to better !
i 2) The C-A-5-H gel became more cross-liked after carbonation with the predominant Q* sites instead of i i understand the AAS's i
.. Q"and Q*in uncarbonated AAS. JEERY carbonation J
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