sck cen

Production and characterization of 9Cr HT RAFM steels

Olga Kachko ¹Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium E-mail: olga.kachko@sckcen.be

Methods

A search algorithm has been developed to select a combination of composition and heat treatments that leads to improved creep resistance with respect to the reference material EU97-2. Two model alloys were designed with the chemical compositions shown in Table 1. Low carbon content to reduce irradiation embrittlement and high carbo/nitride formers content was achieved to insure high fraction of finely dispersed MX precipitates.

wt %	C	Mn	Si	Cr	W	Ν	V	Та
Model alloy 1 (M471)	0.0437	0.4090	0.049	9.0135	0.4670	0.0244	0.3610	0.488
Model alloy 2 (M472)	0.0457	0.4057	0.030	8.611	0.8530	0.0620	0.2263	0.379

Introduction

Reduced activation ferritic/martensitic steels (RAFM) is the best candidate to be used as a structural material in breeding blanket for future fusion reactors. Depending on blanket coolant choices, RAFM steels should either have high strength at temperatures above 550°C (He cooled reactor) or superior radiation-embrittlement properties at lower temperatures (~290–320 °C), for construction of water-cooled blankets.

Current operating temperature window: 350°C – 550°C

Water-cooled (T<350°C) - Low temperature RAFM

wt %	С	Mn	В	Cr	W	Ν	V	Та
EU97-2 [1]	0.11	0.53	0.00023	8.8	1.1	0.041	0.2	0.12

Table 1: Chemical Composition of Model Alloys.

In search of new alloys:

- complete austenitization at T_{aust} (no ferrite)
- max. dissolution of MX precipitates at T_{aust}
- max. volume fraction of MX at T_{temp}

• no $M_{23}C_6$ at T_{temp}

Lab-cast

EUROFER (M474)

Modelled HT:

- Irradiation-induced embrittlement He-cooled (T>550°C) - High temperature RAFM

- Creep

Objectives

The objective of this work is to produce RAFM steels for high temperature applications with improved creep resistance with respect to EU97-2 while demonstrating the adequate low temperature performance of the material.

Results

Model alloy 1 (M471_1) has YS comparable to EU97-2 but very low YS after standard HT (M471_2). Model alloy 2 (M472_1) has the highest YS and also comparable YS after standard HT (M472_2).

Model alloys have fully martensitic structure (except M471 standard HT). Block and lath

Model Alloy 1 (M471_1) has lower DBTT as well as higher USE than EU97-2 [1].

Further tuning of heat treatment in high throughput simulator showed that the highest T_{temp} combined with the shortest t_{temp} gave the best combination of mechnanical properties i.e. hardness and absorbed energy.

Two heat treatments were chosen for upscaling: - model alloy 1 (M471): A1050°C/30'_T780°C/10' - model alloy 2 (M472): A1050°C/15′_T760°C/10′

—■— (T_temp = 700°C) (T_temp = 760°C) ← (T_temp = 780°C) - (T_temp = 700°C) (T_temp = 740°C) 150 ← (T_temp = 760°C A1050°C/30' T780°C/10' A1050°C/15′_T760°C/10′ HV = 223HV = 270 (T_temp = 700°C) 300 SAE at - 60 °C = 383.6 J/cm² SAE at -20°C = 352.4 J/cm² (T temp = 760°C) (T_temp = 740°C) 280 -260 -220 -I 240 220 t temp (min) t temp (min Conclusion

- Model alloy 1 (M471_1) and model alloy 2 after standard HT (M472_2) \bullet showed slightly lower YS but superior impact properties compared to EU97-2.
- Low yield stress of model alloy 1 after standard HT (M471_2) could be \bullet explained by heterogeneous grain growth due to undissolved TaC particles [3]
- Very high yield stress of model alloy 2 (M472_1) could be due to lowest T_{temp} (650°C)
- Both hardness and absorbed energy of upscaled grades lie above \bullet EU97-2 [1].
- Ongoing tensile/charpy tests to confirm the improvement made \bullet

 Materna-Morris et al., "Structural material EUROFER97-2, Characterization of Rod and Plate Material: Structural, Tensile, Charpy and Creep Properties," Institut für Materialforschung, Forschungszentrum Karlsruhe, 2007 [2] Material Property Handbook EUROFER97 [3] Xia Zhi-Xin et al., "Effect of TaC Particles Dissolution on Grain Coarsing in Reduced Activation Steels", Journal of Iron and Steel Research, 2011

